$C B$ 系列多功能计数／计批次／计时器操作说明书

$72 \mathrm{H} \times 72 \mathrm{~W} \times 100 \mathrm{~L}$

一，型号说明

CB $\square \square-\mathrm{R}$ D $\square \square$				
＊24V供电电源可订做				

二，型号种类

序号	型 号	面板尺寸（mm）	功能			
			数码管显示位	继电器输出	计批次输出	通信功能
1	CB4－RD42	$48 \mathrm{~W} \times 48 \mathrm{H}$	4位	2	有	无
2	CB4－RC428	$48 \mathrm{~W} \times 48 \mathrm{H}$	4位	2	无	有
3	CB7－RC42	$72 \mathrm{~W} \times 72 \mathrm{H}$	4位	2	无	无
4	CB7－RD428	$72 \mathrm{~W} \times 72 \mathrm{H}$	4位	3	有	有
5	CB7－RC62	$72 \mathrm{~W} \times 72 \mathrm{H}$	6位	2	无	无
6	CB7－RD628	$72 \mathrm{~W} \times 72 \mathrm{H}$	6 位	3	有	有
7	CB7－RC82	$72 \mathrm{~W} \times 72 \mathrm{H}$	8位	2	无	无
8	CB7－RD828	$72 \mathrm{~W} \times 72 \mathrm{H}$	8位	3	有	有

三，技术参数

使用电源	线性电源 AC $220 \mathrm{~V} \pm 10 \%, \quad 110 \mathrm{~V} \pm 10 \%, 50 / 60 \mathrm{~Hz}$ 开关电源 AC／DC $85 \sim 265 V 50 / 60 \mathrm{~Hz}$（可订做DC24V供电）	
整机功耗	＜5W	
输入信号（正弦波，方波）	电平：Hight： $3 \sim 30 \mathrm{~V}$ Low： $0 \sim 2 \mathrm{~V}$	
触发沿	上升沿或下降沿	
计数速度	$\leqslant 10 \mathrm{Kcps}$	
数值保存	10年	
环境温度	$0^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$	
抗干扰能力	电源：2000Vp－p，1／0 端子：100Vp－p	
计数范围	－19999999～99999999（8digit），－199999～999999（6digit），－1999～9999（4digit）	
输出延时时间	0000000．1～9999999．9S（8digit），00000．1～99999．9S（6digit），000．1～999．9S（4digit）	
输入阻抗	$5.4 \mathrm{~K} \Omega$	
继电器触点容量	AC 250V 3A（阻性负载）	
计数输出方式	$F, ~ N, ~ C, ~ R, ~ K, ~ P, ~ Q, ~ A$ 可选（上升或下降计数）	
计时输出方式	ond ，ond1，ond2，FLk，FLk1，FLk2，Int，Int1，ofd	
绝缘阻抗	$\geqslant 20 \mathrm{M} \Omega$（电源端子与外接端子）	
耐压强度	AC 1.5 KV 1 min （电源端子与外接端子）	
定时精度	0． $2 \% \mathrm{FS}$	
定时范围	0．01S $\sim 9999 \mathrm{H} 9 \mathrm{M} 59 \mathrm{~S}$（8digit） $0.01 \mathrm{~S} \sim 9999 \mathrm{H} .59 \mathrm{M}$（6digit）	0．01S $\sim 99 \mathrm{H} 59 \mathrm{M}$（4dgigit）
外形尺寸（mm）	$48 \mathrm{H} \times 48 \mathrm{~W} \times 100 \mathrm{~L} \quad 72 \mathrm{H} \times 72 \mathrm{~W} \times 100 \mathrm{~L}$	

四，面板名称

五，键盘操作说明

1，仪表通电使用之前，请检查接线端子的接线是否正确，供电电源是否符合仪表要求，确认无误后才能通电。
2，仪表共有 5 个操作按键 SET：设定键：在测量状态时按SET键 3 秒进入设定状态。
\triangle ：加键：在SV设定状态下，按一下设定位数加 1 ；在菜单操作中，按一下该键，进行功能转换。 RST：复位键：在测量状态下，按一下测量值复位；在修改设定值状态下，按一下小数点右移一位。 D ：移位键：在测量状态下，按一下进入修改设定值状态；在设定状态下，按一下闪位右移一位。 BRT：批次复位键：在批次测量状态下，按一下批次测量值复位。
3，在设定状态下，按SET键 3 秒退出设定状态进入测量状态；另外在设定状态时长时间不按键，仪表自动退出设定状态，进入测量状态，但退出前修改的各个设定值不被保存。

六，操作流程

表1：各参数设定说明

序号	参数代号	参数含义	说 明
1	LLE	功能设置	若 $L C K=4848$ ，可进入高级功能设置菜单；$L C K=4848 \rightarrow A D D R \rightarrow B A U D \rightarrow S-L \rightarrow P O S \rightarrow E X I T \rightarrow$ 测量状态，按＂\triangle＂和＂\triangle＂键修改项目内容。
2	こ－i	存储／读取菜单设置数据	SAVE \rightarrow LOAD： SAVE：将已设置好的数据存入指定的空间；LOAD从指定的空间中导入数据。
3	ロロら	选择保存数据位置	\square MEMO \rightarrow MEM $1 \rightarrow$ MEM $2 \rightarrow$ MEM3 \rightarrow
4	ヒロi゙	退出菜单	\qquad YES：退出时保存或导入数值；NO：退出时不保存或导入数值按RST键：清除所有的存贴器并退出
5	Fít	多功能模式选择	用＂\triangle＂键选择：CNT \leftrightarrow T I M 选择计数／计时功能。
6		上升／下降计时或计数模式	用＂ $\boldsymbol{\Delta}^{\prime \prime}$＂键选择：$U \leftrightarrow d$ d ：正向计数／计时；d ：反向计数／倒计时
7	im	输入方式选择	用＂ $\boldsymbol{\Delta}^{\prime \prime}$＂键选择共有4种输入方式：（详见附图A：输入方式逻辑关系图） A：CP1为高电平计数，CP2为无效端。 B：$C P 2$ 为高电平时 $C P 1$ 反向计数；$C P 2$ 为低电平时 $C P 1$ 正向计数。 C：CP1正向计数；CP2反向计数。 D：CP1相位比CP2超前，CP1正向计数；CP1相位比CP2落后，CP1反向计数。（适用于旋转编码器输入，不用配接上拉电阻，只限NPN方式）。
8	LP	计数速度选择	用＂ $\boldsymbol{\Delta}^{\prime \prime}$＂键选择不同的计数速度 ${ }^{1 \rightarrow 30 \rightarrow 100 \rightarrow 1 \mathrm{~K} \rightarrow 10 \mathrm{~K} \rightarrow}$
9	\square	比率系数	－键：移动闪胨的位置 $\boldsymbol{\Delta}$ 键：改变闪烁位的数值比率系数的设定范围：0．0000001～99999999比率系数值：用一个脉冲的计数输入来测量长度，位置，或流量的实际值。
10		显示值小数点设定	用＂ $\mathbf{\Delta}^{\text {＂}}$ 键选择不同的小数点位置
11	E1 5117	触发模式	用＂ $\boldsymbol{\Delta}^{\prime \prime}$＂键选择上升沿或下降沿触发；选择有电压或无电压输入
12	ミ1テ	计时范围选择	＂ $\boldsymbol{\Delta}$＂键：选择不同的计时范围 $\quad S \rightarrow M . S \rightarrow H . M \rightarrow$ S：0．01s～9999．99s M．S：0．01s～9999m59s H．M： $1 \mathrm{~m} \sim 9999 \mathrm{~h} 59 \mathrm{~m}$ ； Н．М．S ~ 99 Н59М59S99
13	iாn	输入控制信号脉宽	用＂ $\boldsymbol{\Delta}^{\prime \prime}$ 键选择不同的计时范围 \square ${ }^{1 \rightarrow 30 \rightarrow 100 \rightarrow 1000 \rightarrow}$ Pulse Width的设定范围： $1 \sim 1000$ ；单位：毫秒设定输入信号如RESET信号，BATCH RESET信号和PAUSE信号的宽度。
			＂ $\boldsymbol{\Delta}^{\prime \prime}$＂键：选择不同的输出控制方式
14	ロ！iヒ	输出方式选择	批次计数／线速度输出的输出方式：$F, ~ N, ~ R, ~ C$（同上）
			i＋ 时 ond \rightarrow ond $1 \rightarrow$ ond $2 \rightarrow F L K \rightarrow F L K 1 \rightarrow F L K 2 \rightarrow i n t \rightarrow i n t 1 \rightarrow o f d$ （详见附图C：计时器输出动作模式）
15		输出1，2延时时间	键：移动闪伢的位置 （键：改变闪烁位的数值 RST键：改变延时时间小数点的位置。延时时间的设定范围：同计时器设定时间范围最小延时时间 0.01 秒。 具体设定范围同 $\llcorner 1 \bar{\Pi}$（计数范围选择）
16	Hol	停电存储计数值	YES：记忆保持功能（记忆测量数据，电源断电后再上电在原来的基础上继续计时或计数） NO：没有记忆保持功能，重新上电后，测量数据将清零
17	LLE	锁键	－键：移动闪烁的位置 （键：改变闪烁位的数值 Password的设定范围：0000～9999 系统根据用户输入Password的四个数值来分别锁定或开启四个不同的功能： 1 ：锁定或开启SV值，只有当 $L C K=0001$ 时，SV值不可改，否则SV值可改； 2：锁定或开启RST，BRT键，只有当LCK＝1000时，才锁定RST，BRT键，即按RST或BRT键不将数据复位。否则开启RST，BRT的复位功能，（RST，BRT外控端子不锁）。 3 ：锁定或开启写出厂值功能，只有当LCK $=0100$ 时，才能在测量状态下按SET $+\boldsymbol{\Delta}$ 键不放 3 秒后闪烁显示＂INIT＂ 1 秒后恢复出厂值。 4：锁定或开启菜单；只有当 $L C K=0010$ 时，，锁定菜单，用户不能修改菜单值；反之如果不为 1则可设定各个菜单值。

表2：SV值设定参数

序号	参数代号	参数含义	说 明	设置范围
1	SV1	设定值 1 （SV1灯亮时显示）	up模式时，当测量值上升到设定值SV1时，AL1有输出，AL1灯亮，复位状态为 0 。down模式时，当测量值下降到 0 时，AL 1 有输出， AL1灯亮。复位状态为SV1。 ＂\triangle＂键：修改闪胨位数值。 ＂\triangleright＂键：移位键。 SET键：确认所修改的数值。如不小心将数值设为＂ 0 ＂，按SET键则短暂显示＂Error＂或＂Erro＂．且不能退出当前的状态。 RST键：小数点移动键，按一下小数点右移一位小数．	0．001－9999 （4位显示） 0．00001－999999 （6位显示） 0．0000001－99999999 （8位显示）
2	SV2	设定值2 （SV2灯亮时显示）	up模式时，测量值上升到设定值SV2时，AL2有输出，AL2灯亮。 down模式时，测量值下降设定值SV2，为SV1－SV2时，AL2有输出， AL2灯亮。SET键，RST键：同上	$\begin{aligned} & \text { SV } 1 \geqslant P \\ & \text { SV2 } \geqslant P \\ & P \geqslant 0 \end{aligned}$
3	BSV	批次设定值 （BSV灯亮时显示）	$u p$ 模式时，测量值上升到设定值 $B S V$ 时，BAO有输出，BAO灯亮。 down模式时，测量值下降到设定值 $B S V$ 时，BAO有输出，BAO灯亮。 SET键，RST键：同上	$\begin{aligned} & B S V \geqslant B P \\ & B P \geqslant 0 \end{aligned}$

附图A 输入方式逻辑关系图

模式	UP	down	说明
A			CP2：不计数输入 CP1：计数输入
B			UP方式： CP2无信号输入，CP1加计数 CP2有信号输入，CP1减计数 domn方式： CP2无信号输入，CP1加计数 CP2有信号输入，CP1减计数
C			up方式： CP1加计数，CP2减计数 显示值＝CP1－CP2 down方式： CP1减计数，CP2加计数 显示值＝CP2－CP1
D			up方式： CP2滞后CP1，则CP2加计数 CP2超前CP1，则CP2减计数 down方式： CP2滞后CP1，则CP2减计数 CP2超前CP1，则CP2加计数

附图B：计数器输出动作模式

		输入模式		计数到达设定值后的动作
		上升计时计数	下降计时计数	
$\begin{array}{\|l\|} \\ \mid \text { 输 } \\ \text { 出 } \\ \text { 模 } \\ \text { 式 } \end{array}$	F			显示值继续增或减，输出一直保持到复位输入。
	N			输出和显示值一直保持到复位输入。
	c			显示值自动回到初始状态，输出延时到设定时间后自动回到初始状态输出动作为重复单一输出
	R			显示值及输出延时到设定时间后自动回到初始状态。输出动作为重复单一输出）
	K			显示值继续递增／减，直到复位输入；输出延时到设定时间后回到初始状态。 （输出动作为一输出）
	P			显示值维持单一输出延时时间后，显示下一周期值。 （延时时间内显示值从初始值开始下周期计数，计时输出动作为重复单一输出）
	0			显示值在单一输出（延时）时间中继续递增／减，单一输出（延时）时间后回到初始状态。 输出延迟到设定时间后回到初始状态。（输出动作为重复单一输出）
	A			最小设定值与AL2输出保持到手动复位输入，AL1输出延迟到设定时间后回到初始状态。输出为单一输出动作。

附图C：计时器输出动作模式
\square One－shot输出

输出方式	时序图	动作
$\frac{\square 1 \pi-1}{(O N D)}$		1）当CP1信号变ON时计时，如果CP1信号变为OFF计时复位。 2）当复位信号 $O F F$ 时，$C P 1$ 信号 $O N$ 的时候，电源 $O N$时开始计数。 3）控制输出动作由hold或 One－shot时间来实现。
$\begin{aligned} & \text { ancil! ! } \\ & \text { (OND. 1) } \end{aligned}$		1）当CP1信号为 $O N$ 时计时，如果CP1信号变为 $0 F F$计时继续。 2）当复位信号OFFF时，CP 1 信号ON的时候，电源 ON时，开始计数。 3）控制输出动作由hold或One－shot时间来实现的。 （输出）
	POWER ON DELAY（电源OFF计数保持） 电源 CP1 PAUSE a a a	1）当电源为 $O N$ 时计时，如果电源变为 OFF计时保持。 2）当复位信号OFF时，PAUSE信号OFF，电源ON时，开始计数。 3）控制输出动作由hold或One－shot时间来实现的

3）控制输出动作由hold或One－shot时间来实现的。

1）当CP1信号变ON时计时，如果CP1信号重复出现，则只有最初的信号被认可。
2）当电源变 $O N$ 和复位信号 $O F F$ F时，CP1信号 $O N$时，计时开始。
3）控制输出动作由hold输出，当计时到Toff设定时间或Ton设定时间时，输出为ON或OFF。 （无One－shot输出）
4）每一个Ton时间和Toff时间必须单独设置。 5）使用接点输出，设置的时间必须大于 100 ms 。

1）当CP1信号ON时计时，如果CP1信号被认可，则只有最初的信号为效的。
2）当电源变 $O N$ 和复位信号 $O F F$ ，CP 1 信号 $O N$ 时，计时开始。
3）控制输出动作hold 输出，使用接点输出，设置时间必须大于 100 ms 。

1）当CP1信号变为 ON时计时，如果CP1信号被认可，则只有最初的信号为有效的。
2）当电源 0 N和复位信号 OFF，CP1信号ON时计时开始。
3）控制输出动作由One－shot输出，使用接点输出设置的时间必须大于 100 ms 。

$\begin{aligned} & F \mid E=- \\ & (F L K) \end{aligned}$	FLCKER2（电源OFFHold）：Hold 输出	1）当 $C P 1$ 信号变 $0 N$ 时计时，如果CP1信号被认可，则只有最初的信号是为有效的。 2）控制输出动作由Hold输出，直接保持到下一个设定值。 3）当电源变 $0 N$ 和复位信号 $0 F F$ 时，CP1信号 $0 N$ 时，计时开始。 4）使用接点输出，设置的时间必须大于 100 ms 。
		1）当 $C P 1$ 信号变 $0 N$ 时计时，如果CP1信号被认可，则只有最初的信号为有效的。 2）控制输出动作由One－shot输出，在达到设定值时输出。 3）当电源变 $O N$ 和复位信号 $0 F F$ 时，CP1信号 $0 N$ 时，计时开始。 4）使用接点输出，设置的时间必须大于 100 ms 。
$\begin{aligned} & 17 E \\ & \text { (INT) } \end{aligned}$	INTERVAL（电源／信号复位）	1）当CP1信号变ON时开始计时。 2）当CP1信号变 0 FF 时计时复位。 3）当电源变 $0 N$ 和复位信号 $0 F F$ 时，CP1信号 $0 N$ 时，计时开始。 4）当计时达到设定时，显示值和控制输出将自动复位。 5）在计时过程期间，控制输出为 0 N 。
$\begin{aligned} & 1 \pi E_{1}^{\prime} \\ & \text { (INT. 1) } \end{aligned}$		1）当CP1信号变 $0 N$ 时，控制输出为 $0 N$ 并且计数开始。 2）如果CP1信号重复的来，只有最初的一个信号是被认可的。 3）当计时达到设定值时，显示值和控制输出将自动复位。 4）当电源 $0 N$ 和重复信号 $0 F F$ ，CP1信号 $0 N$ 时，计时开始。 5）当CP1信号保持 $O N$ 状态时，计时过程正常。
$\begin{aligned} & \square F_{\square}^{\prime} \\ & (0 F D) \end{aligned}$		1）如果电源 0 N和复位信号 $0 F F$ 时，在CP1信号为 $0 N$ 期间，在控制输出保持 ON 状态。 2）当计时到达设定值时，显示和控制输出将自动复位。

七，接线图

CB7

注：若说明书接线图与仪表实际接线图有差异，应以仪表实际接线图为准

八，输入连接

1，输入逻辑：无电压输入（NPN）
（1）固态输入
－标准传感器：NPN output 型传感器

2，输入逻辑：电压输入（PNP）
（1）固态输入
－标准传感器：PNP output 型传感器

（2）接点接入

九，外形尺寸

CB4

CB7

十，注意事项

1，在测量状态下，外短接RST接线端子或手按RST按键都将引起定时值，计数值及输出复位。
2，计数器输入方式为 d 方式时可配旋转编码器使用；配旋转编码器不再接上拉电阻（只允许NPN）。
3，改变仪表工作模式后，请按＂RST＂键使仪表复位，仪表才可靠地进行测量控制。
4，若仪表显示＂Error＂或＂Erro＂信息，请检查仪表参数SV1，SV2及P是否符合逻辑关系。（逻辑关系请参照表2）。
5，输入信号：从传感器到计时器的距离尽可能的要短；要延长信号线时应使用屏蔽线；信号线和电源线应该分开。
6，计数器输入连接：在高速模式（ $1 \mathrm{~K}, ~ 5 \mathrm{~K}, ~ 10 \mathrm{~K}$ ）时；如果用接点输入方式可能会出现多计数现象；因此在接点输入方式下应该设置低速输入（ 1 或 30 cps ）。
7，不可使用在以下的场所：严重震动和冲击的地方；使用强碱和酸的地方；有太阳光直射的地方；有强磁场和电子干扰的场所。
8，安装环境：应使用在室内；海拔2000M以内；污染等级为 2 。
※如不按上述操作可能会引起产品的故障

Y／TOKY东崎电气有限公司香港（FAX）00852－31450079		TOKY ELECRT 大陆（FAX）：0760－3371891／892／893	CAL CO．，LTD 总机：0760－3371800
东崎仪表	销售专线：0760－3371801／802	技术支持：0760－3371803／804	售后服务专线：0760－3371810
	大陆工厂：广东省中山市石歧	营科技园）民科西路3号	
杰出口品牌	Add：Civil Science \＆Techn Zhongshan，Guangdong，China	Park，NO． 3 Minke West Road，Shiq	North District，
	http：／／www．toky．com．cn	E－mail：xs＠toky．com．cn	

